3 research outputs found

    Solar Rectennas: Analysis and Design

    Get PDF
    There is a growing interest in recent years on developing solar cells and increasing their conversion efficiency. This interest was motivated by the demand on producing clean and inexpensive energy, where the current solar cell technology failed to fulfill the market demand due to its low efficiency obtained. Thus, an efficient alternative is highly required to overcome the drawbacks of current photovoltaic technologies. In this chapter, the concept and operation of solar rectennas will be introduced as an efficient energy-harvesting technology and as a better alternative to conventional solar cells. Nanoantennas are used for receiving solar radiation at both visible and infrared regions as AC electromagnetic signals. The received power is then passed to a nanodiode that acts as a rectifier to convert the power from AC to DC form. Nanoarrays are utilized often to increase the captured energy and decrease the number of rectifiers of the entire system. The biggest challenge is how to design an efficient nanoantenna integrated efficiently into a nanodiode in order to maximize the overall efficiency. State-of-the-art designs for nanoantennas and nanodiodes will be highlighted in this chapter mentioning the figure of merits used to compare between one design and another

    Implantable Wireless Systems: A Review of Potentials and Challenges

    Get PDF
    With the current advancement in micro-and nano-fabrication processes and the newly developed approaches, wireless implantable devices are now able to meet the demand for compact, self-powered, wireless, and long-lasting implantable devices for medical and health-care applications. The demonstrated fabrication advancement enabled the wireless implantable devices to overcome the previous limitations of electromagnetic-based wireless devices such as the high volume due to large antenna size and to overcome the tissue and bone losses related to the ultrasound implantable devices. Recent state-of-the-are wireless implantable devices can efficiently harvest electromagnetic energy and detect RF signals with minimum losses. Most of the current implanted devices are powered by batteries, which is not an ideal solution as these batteries need periodic charging and replacement. On the other hand, the implantable devices that are powered by energy harvesters are operating continuously, patient-friendly, and are easy to use. Future wireless implantable devices face a strong demand to be linked with IoT-based applications and devices with data visualization on mobile devices. This type of application requires additional units, which means more power consumption. Thus, the challenge here is to reduce the overall power consumption and increase the wireless power transfer efficiency. This chapter presents the state-of-the-art wireless power transfer techniques and approaches that are used to drive implantable devices. These techniques include inductive coupling, radiofrequency, ultrasonic, photovoltaic, and heat. The advantages and disadvantages of these approaches and techniques along with the challenges and limitations of each technique will be discussed. Furthermore, the performance parameters such as operating distance, energy harvesting efficiency, and size will be discussed and analyzed to introduce a comprehensive comparison. Finally, the recent advances in materials development and wireless communication strategies, are also discussed
    corecore